Types of Relations

IMPORTANT

Types of Relations: Overview

This topic consists of various concepts like Reflexive Relation on Sets,Symmetric Relation on Sets,Transitive Relation on Sets, etc.

Important Questions on Types of Relations

MEDIUM
IMPORTANT

The relation R can be defined in the set1,2,3,4,5,6 as  R=(a,b):b=a+1 .It is an example of 

EASY
IMPORTANT

A relation R on the set A=a,b,cis said to be symmetric if 

EASY
IMPORTANT

A relation R is said to be reflexive for all a,bA, if  

EASY
IMPORTANT

Let R=a,b:a divides b defined on set of natural numbers; then R is

EASY
IMPORTANT

Let R=L1,L2:L1 is perpendicular to L2 defined on the set of all lines in XY-plane, then R is

EASY
IMPORTANT

R=x,y:x<y defined on N is

MEDIUM
IMPORTANT

Let A=1,2,3, and R=1,1,2,1,2,2,1,2,3,2,3,3; then R is:

MEDIUM
IMPORTANT

Let A=1,2,3, and R=1,1,1,2,1,3,2,1,2,3; then R is:

MEDIUM
IMPORTANT

Let A=1,2,3, which of the following is not an equivalence relation on A?

MEDIUM
IMPORTANT

Let R be the relation in the set 1,2,3; given by R=1,2,2,2,1,1,2,3,1,3,3,3,3,2. Choose the correct answer.

EASY
IMPORTANT

LetR=1,3,2,4,4,2,2,3,3,1 be a relationship on set A=1,2,3,4. The relation is 

EASY
IMPORTANT

Which of the following is not an equivalence relation on Z?

EASY
IMPORTANT

A relation R on the set A=a,b,c is said to be transitive, if

MEDIUM
IMPORTANT

Show that the relation R in the set of real numbers defined as:

R=a,b:ab3 is not an equivalence relation.

MEDIUM
IMPORTANT

Show that the relation R in the set of real numbers defined as:

R=a,b:ab is reflexive, transitive but not symmetric.

MEDIUM
IMPORTANT

Show that the relation R in the set of real numbers defined as:

R=a,b:a2+b2=1 is symmetric but neither reflexive nor transitive.

MEDIUM
IMPORTANT

Let A be the set of all the points in a plane and let O be the origin. Show that the relation R defined by R=P,Q:OP=OQ is an equivalence relation.

MEDIUM
IMPORTANT

Let A=1,2,3, R1=1,1,1,2,2,1,2,2,3,3 and R2=1,1,2,2,3,3,2,3,3,2. Are R1 and R2 equivalence relations? Is R1R2 is an equivalence relation? Give reason to support your answer.

MEDIUM
IMPORTANT

Let R be a relation on the set of ordered pairs of positive integers defined by x,yRu,v if and only if xv=yu. Show that relation R is an equivalence relation.

MEDIUM
IMPORTANT

Show that the relation R in the set of all polygons as R=P2,P1: P1 and P2 have same number of sides, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3,4 and 5?